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Regimes of Oscillation in a Linear 
Array of Vortices 

H. Willaime, 1 0 .  Cardoso, 1 and P. Tabeling 1 

The instabilities of a linear array of vortices are studied experimentally, for two 
values of the thickness of the fluid layer. In the first case (thickness of 2 mm), 
the system is found to behave like a chain of coupled oscillators. New 
experimental results obtained for a thickness of 3 mm are described. The 
qualitatively different behavior found in the latter case may be the signature of 
the influence of a second-neighbor coupling. 
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The t rans i t ion  to spa t i o t empora l  chaos is a p rob lem of great  cur rent  
interest.  Because of the large number  of possible  routes  leading to weak 
turbulence,  m a n y  studies have been devoted  to systems of low d imens ion  
(see, e.g., refs. 1). In  this report ,  we present  recent results ob ta ined  with a 
system whose spa t io t empora l  dynamics  is essential ly one d imens iona l  in 
space. 

The exper imenta l  system which we consider  herein is a l inear  a r ray  of 
vortices. It is s imilar  to that  used in previous  studies. ~2~ The cell is an open 
rec tangula r  conta iner ,  350 ram long, 5 0 m m  high, and  4 0 r a m  wide, 
mach ined  out  of perpex or  PVC. The work ing  fluid, which is a no rma l  
so lu t ion  of sulfuric acid, is p laced in a groove,  300 m m  long, 20 m m  large, 
mach ined  in the b o t t o m  plate  of the cell. Exper iments  are carr ied out  for 
two values of the depth  of the groove  b: b = 2  m m  (exper iment  A) and  
b = 3 m m  (exper iment  B). T h r o u g h o u t  the exper iment ,  the thickness of the 
fluid layer  is ma in t a ined  at a value equal  to b in o rder  to keep the free sur- 
face flat when the fluid is at  rest. Just  be low the fluid layer,  a line of pe rma-  
nent  magnets  is formed;  each ind iv idua l  magne t  is a s amar ium coba l t  
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parallelepiped, of dimensions 5 x 8 x 3 mm. They are put together to form 
a line of alternating poles. The vertical component of the resulting magnetic 
field, within the liquid layer, is a periodic function--close to a sinusoidal 
function--of the coordinate along the lattice, with a zero mean value, and 
an amplitude of 0.3 T. A steady electric current I is driven longitudinally 
through the electrolyte; it interacts with the magnetic field to force the flow. 

For  quantitative analysis, we use a shadowgraph technique, based on 
the fact that the free surface of the liquid is deflected by the rotation of the 
vortices. We thus form the image of the perturbed surface of the fluid by 
using a system of two confocal lenses, characterized by lateral magnifica- 
tions ranging from 1/15 to 1/50. This method allows for visualizing the 
separatrices between vortices as light lines. We further digitize the image 
and track the position of such lines. In the time-dependent regimes, the 
corresponding ratio of signal to noise is about 40 dB. 

At low currents, the basic state of flow is a linear array of counter- 
rotating vortices of sizes equal to that of an individual magnet. As the 
electric current is increased, the vortices cease to have a uniform size along 
the lattice axis: half of them become larger at the expense of the others, 
which decrease/2) As I is increased further, the small vortices disappear, 
leaving the system composed only of stationary corotating vortices, with a 
size twice as large as that in the basic state. We denote this state by 
"state +".  This state will further become unstable as the electrical current 
is increased. (2~ The dynamics of the system is studied by measuring the 
oscillations of the positions of the separatrices along the lattice. 

In this report, we first summarize the results of experiment A (i.e., for 
b = 2 ram) and further report new results obtained for experiment B (i.e., 
for b = 3 ram). The reader is referred to ref. 2 for a more complete descrip- 
tion of experiment A. 

In experiment A, we find that the bifurcation from state + to the time- 
dependent state is a supercritical Hopf bifurcation. The spatial structure of 
the oscillating mode is in the form of an optical mode, i.e., the separatrices 
oscillate out of phase with their nearest neighbor, with a slowly varying 
amplitude along the lattice. The destabilization of this regime corresponds 
to the onset of an instability that we call the "short-wavelength instability." 
In the new regime, the amplitudes of oscillations are no longer 
homogeneous along the lattice, but show significant variations from one 
oscillator to the other. The corresponding wavelength is thus twice the lat- 
tice mesh. There is a third bifurcation as I is further increased, whose 
characteristics depend on the length of the system. For moderately large 
lattices, the new state is a quasiperiodic regime, with two frequencies, while 
for systems of larger sizes, the new state is a chaotic regime. These 
transitions are summarized in the phase diagram of Fig. la. 
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Fig. 1. Phase diagrams of the system for experiment A: (a) experiment; (b) Eq. (1), with the 
coefficients determined experimentally; ~ = (I-1c)/l,, where 1~ ~ 12.1 mA, The abbreviations 
are: ST, stationary; SWI, short wavelength instability; QP, quasiperiodic state. 

Owing to the particular geometry of the experiment, it is tempting to 
compare the system to a linear chain of coupled oscillators. In the case that 
we consider, such oscillators are necessarily supercritical and a simple 
model can be written down under a nearest neighbor coupling assumption, 
and using the symmetries of the system. We thus have 

own 
- # ( l + i c o )  W , - ( l + i c 2 )  W~ ]Wn[2 + e(l + icl)(Wn l + W,+ l) 

c~t 

- -  (c3 + ic4)  W.(I W._ i[ 2 + I W.+ ,I 2) ( I )  

in which W. is the complex amplitude of the nth oscillator, t is the dimen- 
sionless time, and kt, e, Co, Cl, c2, c3, and c 4 are real coefficients. Models 
similar to Eq. (1), but restricted to linear couplings, have been studied by 
Kuramoto.  (3~ 

According to Eq. (1), the most unstable mode is either an acoustical 
mode (for e > 0), where all the oscillators are in phase, or an optical mode 
(for e < 0), where each oscillator is out of phase with respect to its nearest 
neighbors. One further finds that, depending on the values of the coef- 
ficients, such regimes are unstable either to long-wavelength perturbations 
(i.e., Benjamin-Feir  instabilities), or to short-wavelength perturbations. In 
the latter case, the onset of instability is located at finite distance from the 
primary instability point; the new state is monoperiodic in time and its 
spatial structure is such that half of the amplitudes of oscillation are larger 
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than those of their immediate neighbor; the corresponding wavelength is 
thus exactly twice the lattice mesh. Clearly, the structure of this mode is 
very close to that observed in the experiment (see the SWI introduced 
above). Actually, because of the richness of Eq. (1), one must be more 
quantitative to conclude that the two instabilities are the same. 

It turns out that the experimental situation allows one to determine 
the coefficients of Eq. (1); for that, we used a strategy somewhat similar to 
that of a recent study. (4) The separatrices are labeled from 1 to N along the 
lattice and the order parameter Wn is understood as related to the tem- 
poral behavior of the nth separatrix. We thus find the following values for 
the coefficients of Eq.(1): c0~2.1, c 1 ~ - 4 . 3 ,  c2~-0.2, C 3 ~ - - 0 , 0 8  , 

c4~ -1.2,  e ~  -0.05, and ~=(I-L)/Ic, where Ic,.~ 12.1 mA. Using these 
values, one can further determine the nature of the secondary instability of 
the system. The system is found to be stable to long-wavelength modes, 
and unstable against short-wavelength perturbations. As mentioned above, 
the corresponding instability has precisely the form found in the experi- 
ment. All these theoretical results are in agreement with a numerical study 
of Eq. (1), where the lattice is supposed to have perfectly reflecting ends; 
the phase diagram calculated with the above values of the coefficients is 
shown in Fig. lb, and the results are in remarkable agreement with the 
experiment. 

We therefore find a good agreement between the model and the 
experiment. We have revealed the existence of a small-scale instability-- 
called the SWI--which breaks the same symmetry as the Benjamin-Feir 
instability, but is short wavelength (twice the lattice mesh) and appears at 
finite distance from the primary instability point. This instability is related 
to the discrete nature of our system, and to the existence of nonlinear inter- 
actions between the oscillators. 

We now describe results obtained on experiment B. The system has 
been studied for a number of magnets ranging from 4 to 38; this 
corresponds to a number of corotating vortices varying from 2 to 19, and 
therefore a number of oscillators ranging from 1 to 18 (we assume here that 
one can still establish an analogy between this system and a chain of 
oscillators, as above). In this case, as in experiment A, the first regime of 
oscillation is monoperiodic and the corresponding bifurcation is clearly 
supercritical in systems of small sizes; however, as soon as the number of 
corotating vortices becomes larger than 3, its spatial structure is very dif- 
ferent from that observed in experiment A: in particular, in large systems, 
there is no standing wave at onset, but propagative waves, or counter- 
propagating waves, depending on the initial conditions and the control 
parameter; the amplitudes of oscillation are not smooth functions of the 
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lattice coordinate, but show large variations along the system. These 
features appear on the direct time recordings of Fig. 2, where a fraction of 
the lattice is represented. In this case, there are 34 magnets, and the system 
is close to the onset of the oscillation; the regime is monoperiodic at 
frequency f =  180 mHz. The amplitude of oscillation is clearly nonuniform 
along the lattice: the oscillators are structured into regions where the 
oscillation has a large amplitude, separated by deep minima of amplitude. 
Figure 2 typically represents the dynamical state of the system above onset 
of oscillation. The domains where the oscillators have a significant 

. amplitude are usually composed of one, two, or three elements. There is no 
clear relation between their size and the control parameter except a 
tendency to decrease as I is increased. The positions of the minima and 
maxima of amplitude are dependent on the initial conditions, so that it is 
difficult to invoke experimental imperfections to account for their existence. 

One can propose a rough classification of the types of structures that 
we observe. They are represented in Fig. 3, which shows typical spatial 
evolutions of the amplitudes and phases along the lattice. Figure 3a 
represents a part of the system sustaining a single propagating wave, 
traveling from left to right, with a wavelength equal to about four times the 
lattice mesh. In contrast with the simplicity of the spatial structure of the 
phase, that of the amplitude is more complex; it shows large variations 
from one oscillator to the other. Another type of structure that we observed 

800 i i i i i ~ r i 

7oo 

600 

o . J ..-.. 

soo 

400 

a~ 
300 

O ~ 200 

100  O. 

0 r i i i i i ~ i 

100 200 300 400 

t ime (s) 

Fig. 2. Direct time recordings of the oscillations of the separatrices in part of a lattice com- 
posed of 17 corotating vortices (34 magnets), for I = 2 3  mA and b = 3 mm (experiment B). 
Each record corresponds to the instantaneous position of a separatrix. The regime is 
monoperiodic. 
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corresponds to a sink (see Fig. 3b): in this case, there are two counter- 
propagating waves, separated by a sink. Sudh sinks seem to be associated 
with a zero of amplitude and a phase shift of zc (see Fig. 3b). It is 
interesting to mention that we observe at most a single sink in the system. 
As the control parameter is increased, the sink migrates along the lattice, 
usually toward an extremity. Sinks and deep minima of amplitude divide 
the system into "domains", as described above. Another type of structure 
that we have observed is shown in Fig. 3c: within a single ~ one 
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Fig. 3. Typical phase and amplitude spatial evolution in the monoperiodic state of experi- 
ment B, for 38 magnets. The black points correspond to the amplitude, and the squares to the 
phase; dashed and full lines are drawn to guide the eye. Variable n denotes the position of the 
separatrix along the lattice (labeled from 1 to 18 in this case); (a) traveling wave with large- 
amplitude variations from one oscillator to the other; (b) presence of a sink; (c) change of 
wavelength. 
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can have a shift in the phase velocity of the wave; however, in this case, 
such a shift is not associated with anything particular concerning the 
amplitude. 

The dynamical state of the system above the oscillation onset is thus 
characterized by traveling waves, domains, sinks, minima of amplitude, 
and phase velocity shifts. All such structures are present in a disordered 
way along the lattice. There is therefore no spatial order in this case. As the 
control parameter  is increased, the system becomes unstable, giving rise to 
quasiperiodicity and chaos. Figure 4 shows the chaotic state, in the case of 
34 magnets, for I =  23 mA. In this case, some oscillators oscillate for some 
period of time, then decrease, further oscillate again, and so on, at random. 
This is the type of chaotic behavior that we get in this system; it seems very 
different from that found for experiment A. 

The two experiments thus show two strongly different behaviors: in 
experiment A, for the optical mode regime, the amplitudes of the oscillators 
are slowly modulated along the lattice. In contrast, in experiment B, one 
observes small-scale variations of the amplitude at onset, so that the system 
appears to be composed of clusters of oscillators. It is interesting to note 
that similar observations have been made for a line of convective cells. (5) 
One can ask if there still exists a model of coupled oscillators which 
reproduces the structure of such regimes. An interesting possibility is to 
include a second-neighbor coupling effect, which may give rise, as in 
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Fig. 4. Direct time recordings of the oscillations of the separatrices in part of a lattice com- 
posed of 17 corotating vortices (34 magnets), for I= 23 mA and b = 3 mm (experiment B). The 
regime is chaotic. 
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hel imagnet ic  systems, to a s t rong m o d u l a t i o n  of the order  pa rame te r  a long 
the lattice, in agreement  with the experiment .  Such a possibi l i ty  indeed 
remains  to be examined.  
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